Program

You can import the events of FCPNLO to you Google calendar by pressing the Subscribe button below-right.

Sep
27
Thu
Alessandro Taloni
Sep 27 @ 9:30 am – 10:30 am

The fractional Langevin equation and its application to linear stochastic models.

The Generalized Elastic Model accounts for the dynamics of several physical systems, such as polymers, fluctuating interfaces, growing surfaces, membranes, proteins and file systems among others. We derive the fractional stochastic equation governing the motion of a probe particle (tracer) in such kind of systems. This Langevin equation involves the use of fractional derivative in time and satisfies the Fluctuation-Dissipation relation, it goes under the name of Fractional Langevin Equation. Within this framework the spatial correlations appearing in the Generalized Elastic Model are translated into time correlations described by the fractional derivative together with the space-time correlations of the fractional Gaussian noise. We derive the exact scaling analytical form of several physical observables such as structure factors, roughness and mean square displacement. Special attention will be devoted to the dependence on initial conditions and linear-response relations in the case of an applied potential.
Carlo Manzo
Sep 27 @ 10:30 am – 11:30 am

Molecular organization, diffusion and cell signaling at the cell membrane

Cellular signaling is regulated by biochemical interactions that are ultimately controlled by molecular diffusion. Recent advances in fluorescence microscopy have allowed the visualization of single molecules in living cells at unprecedented spatiotemporal resolution, revealing that the heterogeneity of the cellular environment produces exotic molecular motions that deviate from Brownian behavior [1]. These findings have stimulated new questions about the mechanisms generating these phenomena, as well as regarding their implications for cell biology.

In this context, we have studied a transmembrane receptor involved in the capture of pathogens, which motion exhibits anomalous diffusion with signatures of weak ergodicity breaking [2]. Through the study of receptor mutants, we have been able to correlate the receptors motion to its molecular structures, lateral organization and interactions, thus establishing a link between nonergodicity and biological function. In addition, we have quantitatively interpreted the receptor dynamics through a stochastic model of random motion with random diffusivity on scale-free media [3,4], and we are attempting to gain further insight into the molecular causes of this complex diffusion.

Our work highlights the role of heterogeneity in cell membranes and proposes a connection with function regulation. In addition, our models offer a theoretical framework to interpret anomalous transport in complex media, such as those found, e.g., in soft condensed matter, geology, and ecology.


References

[1]C. Manzo, and M. F. Garcia-Parajo, Rep. Prog. Phys. 78:124601 (2015).
[2]C. Manzo, et al., Phys. Rev. X 5:011021 (2015).
[3]P. Massignan, et al., Phys. Rev. Lett. 112:150603 (2014).
[4]C. Charalambous, et al., Phys. Rev. E 95:032403 (2017).

Trifce Sandev
Sep 27 @ 11:45 am – 12:30 pm

Diffusion and quantum motion under geometric constraints: Fractional calculus approach.

Recent developments in modeling of different physical and biological systems undoubtedly confirmed that fractional calculus is not just an exotic mathematical theory, as it might appeared at the dawn of its emergence. The present work aims to demonstrate this through physical examples of diffusion and quantum motion in two-dimensional comb-like structures, leading to fractional calculus description of the corresponding processes. Comb geometry is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized. The comb model, for the first time, has been applied to investigate anomalous diffusion in low-dimensional percolation clusters, and nowadays it has many applications in description of transport properties in porous dielectrics and low dimensional composites, turbulent diffusion on a comb, tracer dynamics in subsurface aquifers, and anomalous diffusion in spiny dendrites, to name but a few. In this presentation we will show how the time fractional diffusion and Schrödinger equations can be derived by projection of the two dimensional comb dynamics in the one-dimensional configuration space. The anomalous character of the corresponding process can be described by the fact that the particle which moves along the main backbone channel can get trapped in the fingers of the comb. We will also show how the anomalous diffusion along the main backbone depends on the fractal structure of the comb, resulting in natural appearance of fractional derivatives in the corresponding equations for the probability density function. The connection between the anomalous diffusion exponent and the fractal dimension of the comb/mesh structures has been recently experimentally observed in the anomalous transport through porous structurally inhomogeneous media.
Łukasz Płociniczak
Sep 27 @ 12:30 pm – 1:15 pm

Numerical methods for the time-fractional nonlinear diffusion.

We consider a one-dimensional nonlinear diffusion equation with nonlocal time, i.e. the temporal derivative is calculated via the Riemann-Liouville operator. This problem set on a half-line models moisture percolation in certain porous media such as construction materials.

The efficient and convergent numerical method can be constructed as follows. We cast our equation into the self-similar form with the use of the Erdelyi-Kober operator. Then, by a suitable transformation the free-boundary problem is transformed into the initial-value one. Lastly, the resulting integro-differential equation can be written as a nonlinear Volterra equation. In this way, a nonlinear PDE with free boundary can be solved by finding a solution of an ordinary Volterra equation. This quickens the calculations tremendously.

We also prove that a certain family of numerical schemes is convergent to the solution of the aforementioned Volterra equation. The main difficulty lies in the non-Lipschitzian character of the governing nonlinearity. In that case we cannot use the classical theory and have to proceed in other ways. In the talk we will describe the details of the proof.

Enrico Scalas
Sep 27 @ 3:30 pm – 4:00 pm

Continuous-time statistics and generalized relaxation equations

Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic.

Sep
28
Fri
Luz Roncal
Sep 28 @ 9:30 am – 10:30 am

On extension problems and Hardy inequalities in the Heisenberg group.

We prove Hardy-type inequalities for fractional powers of the sublaplacian in the Heisenberg group. In order to get these inequalities, we study the extension problem associated to the sublaplacian. Solutions of the extension problem are written down explicitly and used to establish a trace Hardy inequality that will lead to a Hardy inequality with sharp constants.

Several new results concerning the extension problem in the Heisenberg group are also attained, including characterisations of all solutions of the extension problem satisfiying \(L^p\) integrability, and the study of the higher order extension problem.

This is a joint work with S. Thangavelu (Indian Institute of Science of Bangalore, India).

Enrico Valdinoci
Sep 28 @ 10:30 am – 11:30 am

Chaotic orbits for nonlocal equations and applications to atom dislocation dynamics in crystals.

We consider a nonlocal equation driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way.

In particular, heteroclinic, homoclinic and chaotic trajectories are constructed.

This result regarding symbolic dynamics in a fractional framework is part of a study of the Peierls-Nabarro model for crystal dislocations. The associated evolution equation can be studied in the mesoscopic and macroscopic limit. Namely, the dislocation function has the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium.

These dislocation points evolve according to the external stress and an interior potential, which can be either repulsive or attractive, depending on the relative orientations of the dislocations. For opposite orientations, collisions occur, after which the system relaxes exponentially fast.
Laura Sacerdote
Sep 28 @ 12:30 pm – 1:30 pm

A consistency problem in neural modelling. Coherence between input and output can be obtained using heavy tails distributions.

The coherence between the input and the output of the single units is a problem, sometimes underestimated, in network modeling.

An example in this direction is given by Integrate and Fire models used to describe the membrane potential dynamics of a neuron in a network. The focus of these models concerns the description of the inter-times between events (the InterSpike Intervals, ISIs), i.e. of the output of the neuron. This type of models describes the membrane potential evolution through a suitable stochastic process and the output of the neuron corresponds to the First Passage Time of the considered stochastic process through a boundary. However, the input mechanism determining the membrane potential dynamics often disregards its origin as function of the output of other units.

The seminal idea for these models goes back to 1964 when Gernstein and Mandelbrot proposed the Integrate and Fire model to account for the observed stable behavior of the Inter-spike Interval distribution. They suggested to model the membrane potential dynamics through a Wiener process in order to get the Inverse Gaussian distribution for the inter-times between the successive spikes of the neuron, i.e. its output. The use of the Wiener process was first motivated by its property to be the continuous limit of a random walk, later the randomized random walk was proposed to account for the continuous time characterizing the membrane potential dynamics. In this model, the arrival of inputs from the network determines jumps of fixed size on the membrane potential value. When the membrane potential attains a threshold value \(S\), the neuron releases a spike and the process restart anew. Furthermore, the inter-times between jumps are exponentially distributed.

Unfortunately, this last hypothesis is contradictory with the heavy tail distribution of the output, since the incoming inputs are output of other neurons. Later many variants of the original model appeared in the literature. Their aim was to improve the realism of the model but
unfortunately they forgot the initial clue for it, the heavy tails of the observed output distribution.

However, the ISIs models (or their variants) are generally recognized to be a good compromise between the realism and its easy use and have been proposed to model large networks. These facts motivate us to rethink the ISIs model allowing heavy tail distributions both for the ISIs of the neurons surrounding the modeled neuron and for its output.

Here, we propose to start the model formulation from the main property, i.e. the heavy tails exhibited by the ISIs. This approach allows us to propose here an Integrate and Fire model coherent with these features. The ideal framework for this rethinking involves regularly varying random variables and vectors.
We assume that each input to a unit corresponds to the output of one of \(N < \infty \) neurons of the network. The inter-times between spikes of the same neuron are independent random variables, with regularly varying distribution. Different neurons of the network are not independent, due to the network connections. The only hypothesis that we introduce to account for the dependence is very general, i.e. their ISIs determine a regularly varying vector. Based on these hypothesis we prove that the output inter-times of the considered neuron, described through an Integrate and Fire model, is a regularly varying random variable.

The next step of this modeling procedure requests a suitable rescaling of the obtained process to obtain a time fractional limit for the process describing the membrane potential evolution. We already have some result in this direction, allowing to write down the Laplace transform of the first passage time of the rescaled process through the threshold \(S\) but some mathematical step should be improved to account for the dependence between jumps times also for the limiting process.

References
[1] Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1989. ISBN 0-521-37943-1.
[2] Gal A., and Marom S. Entrainment of the Intrinsic Dynamics of Single Isola Neurons by Natural-Like Input,. The Journal of Neurosciences 33 (18) pp. 7912-7918, 2013.
[3] Gernstein G.L., Mandelbrot B. Random walk models for the activity of a single neuron., Biophys. J. 4 pp. 41-68, 1964.
[4] Holden, A.V. A Note on Convolution and Stable Distributions in the Nervous System., Biol. Cybern. 20 pp. 171-173, 1975.
[5] Jessen, A. H., and Mikosch, T. Regularly varying functions. Publ. Inst. Math. (Beograd) (N.S.), 80(94):171–192, 2006. ISSN 0350-1302.
[6] Lindner B. Superposition of many independent spike trains is generally not a Poisson process, . Physical review E 73 pp. 022901, 2006.
[7] Kyprianou, A. Fluctuations of Lévy Processes with Applications., Springer-Verlag, 2014.
[8] Persi E., Horn D., Volman V., Segev R. and Ben-Jacob E. Modeling of Synchronized Bursting Events: the importance of Inhomogeneity., Neural Computation 16 pp. 2577-2595, 2004.
[9] Tsubo Y., Isomura Y. and Fukai T. Power-Law Inter-Spike Interval Distributions infer a Conditional Maximization of Entropy in Cortical Neurons,. PLOS Computational Biology 8,4 pp. e1002461, 2012.