You can import the events of FCPNLO to you Google calendar by pressing the Subscribe button below-right.
On the Potential Theory of Subordinate Killed Processes.
Random time changes: delayed and rushed motions.
We introduce a precise definition of delayed and rushed processes and provide some examples which are, in some cases, counter-intuitive.
We consider time changes given by subordinators and their inverse processes. Our analysis shows that, quite surprisingly, inverse processes are not necessarily leading to delayed processes.
Space And Time Inversions Of Stochastic Processes And Kelvin Transform.
The location of maxima of some non-local equations.
I will consider a class of non-local equations, assuming that their solutions have a global maximum, and discuss estimates on their position. Such points are of special interest as they describe where hot-spots settle on the long run or, in a probabilistic description, the region around which paths typically concentrate. I will address, on the one hand, the interplay of competing parameters whose compromise the resulting location is, and the impact of geometric constraints, on the other.
References
[1] A. Biswas and J. Lőrinczi. Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators, arXiv:1710.11596, 2017 (under review)
[2] A. Biswas and J. Lőrinczi. Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, arXiv:1711.09267, 2017 (under review)
[3] A. Biswas and J. Lőrinczi. Maximum principles for time-fractional Cauchy problems with spatially non-local components, arXiv:1801.02349, 2018 (under review)
[4] A. Biswas and J. Lőrinczi. Ambrosetti-Prodi type results for Dirichlet problems of the fractional Laplacian, arXiv:1803.08540, 2018 (under review)
Ergodicity of Diffusion Processes
Caputo evolution equations with time-nonlocal initial condition
Consider the Caputo evolution equation (EE) \(\partial^\beta_t u = \Delta u\) with initial condition \(\phi\) on \(\{0\}\times\mathbb R^d\). As it is well known, the solution reads \(u(t, x) = \mathbf{E}_x\left[\phi (B_{E_t})\right]\). Here \(B_t\) is a Brownian motion and the independent time change \(E_t\) is an inverse \(\beta\)-stable subordinator. This is a popular model for subdiffusion [6], with remarkable universality properties [1]. We substitute the Caputo derivative \(\partial^\beta_t\) with the Marchaud derivative. This results in a natural extension of the Caputo EE featuring a time-nonlocal initial condition \(\phi\) on \((-\infty, 0] \times \mathbb{R}^d\). We derive the new stochastic representation for the solution, namely \(u(t, x) = \mathbf{E}_x\left[\phi(-W_t, B_{E_t})\right]\). This stochastic representation has a pleasing interpretation due to the non-obvious presence of \(W_t\). Here \(W_t\) denotes the waiting/trapping time of the subdiffusion \(B_{E_t}\). We discuss classical-wellposedness for the space-fractional case, following [7]. Additionally, following [3, 4], we discuss weak-wellposedness for the respective extensions of Caputo-type EEs (such as in [2, 5]).
References
[1] Barlow, Martin T.; Cerny, Jiri (2011). Probability theory and related fields, 149.3-4: 639-673.
[2] Chen Z-Q., Kim P., Kumagai T., Wang J. (2017). arXiv:1708.05863.
[3] Du Q., Yang V., Zhou Z. (2017). Discrete and
continuous dynamical systems series B, Vol 22, n. 2.
[4] Du Q., Toniazzi L., Zhou Z. (2018).
Preprint. Expected submission date: Sept. 2018.
[5] Hernández-Hernández, M.E., Kolokoltsov, V.N., Toniazzi, L. (2017). Chaos, Solitons & Fractals, 102, 184-196.
[6] Meerschaert, M.M., Sikorskii, A. (2012). Stochastic Models for Fractional Calculus, De Gruyter
Studies in Mathematics, Book 43.
[7] Toniazzi L. (2018). To appear in J Math Anal Appl. arXiv:1805.02464.
Heat kernel estimates for fractional evolution equations.
In 1967 Aronson showed that the fundamental solution of the heat equation for a second order uniformly elliptic operator in divergence form satisfies two-sided Gaussian estimates. Using this celebrated result, we investigate two-sided estimates for the fundamental solution of the fractional analogues of the heat equation, where one replaces the time derivative with a Caputo fractional derivative of order \(\beta \in (0, 1)\) and also replace the second order elliptic operator with a homogeneous pseudo-differential operator. The starting point for these estimates is given by a formula, which is due to Zolotarev, that links Mittag-Leffler functions with \(\beta\)-stable densities via the Laplace transform. Probabilistically speaking, the solution of such fractional evolution equations is typically some time-changed Brownian motion, or time-changed stable process. This is joint work with Vassili Kolokoltsov.
The fractional Langevin equation and its application to linear stochastic models.
Molecular organization, diffusion and cell signaling at the cell membrane
Cellular signaling is regulated by biochemical interactions that are ultimately controlled by molecular diffusion. Recent advances in fluorescence microscopy have allowed the visualization of single molecules in living cells at unprecedented spatiotemporal resolution, revealing that the heterogeneity of the cellular environment produces exotic molecular motions that deviate from Brownian behavior [1]. These findings have stimulated new questions about the mechanisms generating these phenomena, as well as regarding their implications for cell biology.
In this context, we have studied a transmembrane receptor involved in the capture of pathogens, which motion exhibits anomalous diffusion with signatures of weak ergodicity breaking [2]. Through the study of receptor mutants, we have been able to correlate the receptors motion to its molecular structures, lateral organization and interactions, thus establishing a link between nonergodicity and biological function. In addition, we have quantitatively interpreted the receptor dynamics through a stochastic model of random motion with random diffusivity on scale-free media [3,4], and we are attempting to gain further insight into the molecular causes of this complex diffusion.
Our work highlights the role of heterogeneity in cell membranes and proposes a connection with function regulation. In addition, our models offer a theoretical framework to interpret anomalous transport in complex media, such as those found, e.g., in soft condensed matter, geology, and ecology.
References
[1]C. Manzo, and M. F. Garcia-Parajo, Rep. Prog. Phys. 78:124601 (2015).
[2]C. Manzo, et al., Phys. Rev. X 5:011021 (2015).
[3]P. Massignan, et al., Phys. Rev. Lett. 112:150603 (2014).
[4]C. Charalambous, et al., Phys. Rev. E 95:032403 (2017).