You can import the events of FCPNLO to you Google calendar by pressing the Subscribe button below-right.
On the Potential Theory of Subordinate Killed Processes.
Random time changes: delayed and rushed motions.
We introduce a precise definition of delayed and rushed processes and provide some examples which are, in some cases, counter-intuitive.
We consider time changes given by subordinators and their inverse processes. Our analysis shows that, quite surprisingly, inverse processes are not necessarily leading to delayed processes.
Space And Time Inversions Of Stochastic Processes And Kelvin Transform.
The location of maxima of some non-local equations.
I will consider a class of non-local equations, assuming that their solutions have a global maximum, and discuss estimates on their position. Such points are of special interest as they describe where hot-spots settle on the long run or, in a probabilistic description, the region around which paths typically concentrate. I will address, on the one hand, the interplay of competing parameters whose compromise the resulting location is, and the impact of geometric constraints, on the other.
References
[1] A. Biswas and J. Lőrinczi. Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators, arXiv:1710.11596, 2017 (under review)
[2] A. Biswas and J. Lőrinczi. Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, arXiv:1711.09267, 2017 (under review)
[3] A. Biswas and J. Lőrinczi. Maximum principles for time-fractional Cauchy problems with spatially non-local components, arXiv:1801.02349, 2018 (under review)
[4] A. Biswas and J. Lőrinczi. Ambrosetti-Prodi type results for Dirichlet problems of the fractional Laplacian, arXiv:1803.08540, 2018 (under review)
The fractional Langevin equation and its application to linear stochastic models.
Molecular organization, diffusion and cell signaling at the cell membrane
Cellular signaling is regulated by biochemical interactions that are ultimately controlled by molecular diffusion. Recent advances in fluorescence microscopy have allowed the visualization of single molecules in living cells at unprecedented spatiotemporal resolution, revealing that the heterogeneity of the cellular environment produces exotic molecular motions that deviate from Brownian behavior [1]. These findings have stimulated new questions about the mechanisms generating these phenomena, as well as regarding their implications for cell biology.
In this context, we have studied a transmembrane receptor involved in the capture of pathogens, which motion exhibits anomalous diffusion with signatures of weak ergodicity breaking [2]. Through the study of receptor mutants, we have been able to correlate the receptors motion to its molecular structures, lateral organization and interactions, thus establishing a link between nonergodicity and biological function. In addition, we have quantitatively interpreted the receptor dynamics through a stochastic model of random motion with random diffusivity on scale-free media [3,4], and we are attempting to gain further insight into the molecular causes of this complex diffusion.
Our work highlights the role of heterogeneity in cell membranes and proposes a connection with function regulation. In addition, our models offer a theoretical framework to interpret anomalous transport in complex media, such as those found, e.g., in soft condensed matter, geology, and ecology.
References
[1]C. Manzo, and M. F. Garcia-Parajo, Rep. Prog. Phys. 78:124601 (2015).
[2]C. Manzo, et al., Phys. Rev. X 5:011021 (2015).
[3]P. Massignan, et al., Phys. Rev. Lett. 112:150603 (2014).
[4]C. Charalambous, et al., Phys. Rev. E 95:032403 (2017).
Diffusion and quantum motion under geometric constraints: Fractional calculus approach.
Numerical methods for the time-fractional nonlinear diffusion.
The efficient and convergent numerical method can be constructed as follows. We cast our equation into the self-similar form with the use of the Erdelyi-Kober operator. Then, by a suitable transformation the free-boundary problem is transformed into the initial-value one. Lastly, the resulting integro-differential equation can be written as a nonlinear Volterra equation. In this way, a nonlinear PDE with free boundary can be solved by finding a solution of an ordinary Volterra equation. This quickens the calculations tremendously.
We also prove that a certain family of numerical schemes is convergent to the solution of the aforementioned Volterra equation. The main difficulty lies in the non-Lipschitzian character of the governing nonlinearity. In that case we cannot use the classical theory and have to proceed in other ways. In the talk we will describe the details of the proof.